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Summary

Developing state bound estimation algorithms for nonlinear systems has been
of high importance in robustness analysis of dynamic systems. For many cases,
Monte-Carlo simulation might be the only tool to estimate these bounds for a
general type of nonlinear systems. The required number of simulations for a
tight bound, however, would be very large and it might be impossible to com-
plete within a given computation time. µ-formulation for state bounds trans-
forms the bound estimation problem to a singularity problem and the singular
problem is solved using a randomised optimisation approach. The performance
of the algorithms are demonstrated by multi-dimensional Rosenbrock function;
simple discrete system; large-scale biological system; hybrid system; and nav-
igation error propagation for underwater vehicle. For a given error tolerance
of the bounds, a formula to calculate the required number of sampling in the
algorithms is provided. Because of the inherent complexity of general nonlinear
optimisation problems, the required sampling number increases very fast as the
problem dimension increases. The suggested algorithms would produce, how-
ever, tighter estimation faster than random blind search. In addition, exploiting
parallel computation architecture the suggested algorithms could be the solu-
tion of real-time robustness analysis in future.

The following two conference papers are accepted to 19th IFAC World Congress
2014, 24th- 29th August 2014, Cape Town, South Africa:

1. Kim, J., Kishida, M., and Bates, D.G., ”State bounds estimation for non-
linear systems using mu-analysis”

2. Kim, J., Park, Y., Lee, S., and Lee, Y.K., ”Underwater glider navigation
error compensation using sea current data”
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Chapter 1

Introduction

Robustness is the capability of systems maintaining their functions while in-

ternal and external disturbances produce adverse effects on the performance.

Robustness analysis is an indispensable step in designing engineering systems

[1, 2, 3]. It is also considered as one of the most important aspects in analysing

biological systems [4, 5, 6, 7, 8, 9, 10]. Systematic approach to model many

interactions and analyse noisy measurement data is one of the highly preferable

ways in improving understanding of complex systems [11, 12].

Recently, some of biological system models are described with hundreds of

states and parameters [13, 14]. And, such large-scale systems provide infor-

mation that was not available with small scale models. Similarly, engineering

systems have been evolving to be more and more complex in order to accomplish

improved performance while attaining stronger robustness towards various un-

certain environment. This tendency will continue in future for satisfying much

demanding design specifications and it is important, hence, to have efficient

numerical methods to analyse large-scale systems.

Structured singular value or µ-analysis has been one of the most successful

tools for robustness evaluation [15, 16, 17, 18]. Even though the computational

complexity of µ-analysis was acknowledged at the beginning state of the concept

introduced, it has been successfully used for many practical systems design and

4
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analysis.

The computational complexity of µ-analysis is proved in [19] by transform-

ing µ problem to a corresponding optimisation problem that is known to be

Non-deterministic Polynomial-time hard (NP-hard). As far as NP6=P, the com-

putational complexity is the fundamental obstacle that cannot be overcome by

any algorithms without introducing conservatism in design and analysis. Practi-

cally, however, µ-analysis algorithm produced many useful results. In addition,

recently, it is further extended to solve some class of optimisation problems [20].

This is an inverse interpretation of the formulation in [19].

The application in [20] is calculating state bounds for polynomial nonlinear

discrete systems, where initial states and parameters in the systems are de-

scribed by uncertain bounds. Then, the state maximum and minimum bounds

are calculated using µ upper and lower bounds algorithms. As long as the non-

linearity appears in polynomial, the uncertainties can be decoupled from the

known parts and the system can be described in Linear Fractional Transforma-

tion (LFT) [19, 21]. Once LFT form is obtained, some powerful numerical tools

that provide the upper and the lower bounds of µ can be used, for example, µ

toolbox or Robust Control toolbox in MATLAB [1].

Conservatism of the calculated bounds and the requirement for the uncer-

tainty structures for enabling LFT format are two main obstacles for the state

bounds algorithm to be further extended its applications. µ-analysis problem

is interpreted in geometrical point of view in [22] and it enables one to use

random sampling approach to obtain the bounds. Later, it is further lifted the

requirement of LFT-transformation, i.e. LFT-free µ-analysis [23]. It is, hence, a

natural fusion that combining state bounds estimation and LFT-free µ-analysis.

In this research calculating the bounds of a polynomial function using the

skewed µ-analysis framework presented in [20] is extended to a general type of

nonlinear systems including discontinuous and non-smooth nonlinear functions

using a random sampling method [23].

This report is organised as follows: Firstly, state bounds estimation prob-

5
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lem is formulated as LFT-free µ-analysis and state worst-bounds algorithms are

presented; Secondly, the performance of the algorithms is demonstrated using

various examples: hello world example, oscillatory discrete system, large-scale

biological system, hybrid system, and underwater glider navigation error prop-

agation, where some of the examples are used the algorithm parallelised to run

on Graphical Processing Unit (GPU); Finally, the conclusions are presented.

6
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Chapter 2

Methods, Assumptions, and

Procedures

2.1 Bounds estimation in LFT-formulation

A nonlinear dynamical system is given by

ẋ = f(x, p), (2.1)

where x0 = x(0) is the initial condition at time t = 0, ẋ is the derivative of x

by time, t , x is the state vector, which is an element of the nx-dimensional real

number set, Rnx , nx is a positive integer, p is the uncertain parameters, which

is an element of np-dimensional real number set, Rnp , np is a positive integer,

and f(x, p) is a nonlinear function in x and p, which might have discontinuous

and/or non-smooth parts. Many dynamic systems will fall into this category,

for example, sun tracking controller for UKube-1 using magnetic torquer [24],

spacecraft attitude control using thruster [25], auto-tuning control mechanism

for industrial applications [26].

For the well-posedness of the problem, f(x, p) is assumed to have a unique

solution for the nonlinear differential equation. For a chosen positive real num-

7
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ber, ∆t, a transition function ψ(, ) is defined to satisfy the following:

xk+1 = ψ(xk, p) (2.2)

where xk = x(k∆t) for k = 0, 1, 2, . . .. The transition function can be obtained

by a standard numerical integrator such as Runge-Kutta method.

The main problem is finding the worst-bounds for the maximum and the

minimum of a function, φ(xk), for the given bounds for x0 and p as follows:

Problem 2.1.1 (Bounds estimation) For a real-valued scalar function, φ(xk, p),

obtain φ
min

, φ̄min, φ
max

and φ̄max in the following inequalities:

φ
min
≤ φ ≤ φ̄min, (2.3a)

φ
max
≤ φ̄ ≤ φ̄max, (2.3b)

where φ and φ̄ are the unknown true bounds satisfying φ ≤ φ(xk, p) ≤ φ̄ for all

x0 ≤ x0 ≤ x̄0, and p ≤ p ≤ p̄. That is, φ̄ is the minimum upper bound and φ is

the maximum lower bound.

Remark 2.1.2 The real-valued scalar function, φ(xk, p), could be the position

bounds of a group of debris in space, the miss distance bounds of missile, or the

navigation error bounds of mobile robot.

In the above, all the upper and the lower bounds for φ(xk, p), x0 and p are

assumed to be finite. Systems having a finite escape time to either positive or

negative infinity are excluded in this study

Let φ(xk, p) = xk in Problem 2.1.1. Then, the problem becomes state bound

estimation problem for the give uncertain ranges of the initial condition and the

parameters in the system. For the case that φ(xk, p) is a polynomial function in

xk and p, it can be transformed into LFT form and existing µ bounds algorithms

can be directly used to obtain the bounds. See the below example.

8
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Example 2.1.3 (Special Case) Find the polynomial expression for the state

bounds at t = 2, i.e. x(2), of the following dynamic system:

ẋ = −(1 + p)x (2.4)

where 0 ≤ x(0) ≤ 1 and −1

2
≤ p ≤ 1

2
.

sol) The transition function is given by

φ[x(t), p] = x(t) = ψ[x(t), p] = e−(1+p)tx(0)

At t = 2,

φ[x(2), p] = e−(1+p)2x(0) = e−2e−2px(0)

Using the Taylor series expansion, the uncertain exponential function is given

by

φ[x(2), p] = e−2
(

1− 2p+
4p2

2!
− 8p3

3!
+ . . .

)
x(0)

As |p| ≤ 0.5, ignore the higher order terms in p as follows:

φ[x(2), p] ≈ e−2
(
1− 2p+ p2

)
x(0) (2.5)

Let the nominal values for x(0) and p be 1/2 and 0, which are the midpoints of

the given uncertain boundaries, respectively. Using the midpoints, each can be

written as follows:

x(0) =
1

2
+

1

2
δx (2.6a)

p = 0 +
1

2
δp (2.6b)

where −1 ≤ δx ≤ 1 and −1 ≤ δp ≤ 1.

9
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Substituting (2.6) into (2.5)

φ[x(2), p] ≈ e−2
(

1− δp +
δ2p
4

)(
1

2
+

1

2
δx

)
(2.7)

Hence, this is now in a polynomial function and it can be transformed into

LFT-form. Details about the transformation of the special case can be found in

[20].
�

On the other hand, the Problem 2.1.1 is not possible to transform into a

polynomial expression, in general, without introducing some approximation er-

ror, which might cause significant conservatism in the estimated bounds. In the

following, the same idea obtaining the state bounds using µ-formulation in [20]

is extended without introducing any polynomial approximation.

Let x0 and p in Problem 2.1.1 be the following form:

x0 = xc +Wxδx, (2.8a)

p = pc +Wpδp, (2.8b)

where

Wx = diag

[
wx1 wx2 . . . wxnx

]
, (2.9a)

Wp = diag

[
wp1 wp2 . . . wpnp

]
, (2.9b)

diag[. . .] is the diagonal matrix whose diagonal terms are given in the bracket,

wxi = (x̄0 − x0)/2, wpj = (p̄− p)/2, xc and pc are defined such that

− 1 ≤ δxi
≤ 1 (2.10a)

− 1 ≤ δpj ≤ 1 (2.10b)

for i = 1, 2, . . . , nx and j = 1, 2, . . . , np.

10
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1

1

1

0

Figure 2.1: Pseudo-LFT form

Example 2.1.4 In the system shown in Example 2.1.3, the original function

without the approximation is

φ[x(2), p] = e−2e−2px0

where p = pc + wpδp, x0 = xc + wxδx, pc = 0, wp = 1/2, xc = 1/2, wx = 1/2,

and −1 ≤ δp ≤ 1, −1 ≤ δx ≤ 1.
�

Define

∆φk(δx, δp) := φk(x0, p)− φk(xc, pc) (2.11)

where

φk(·, p) := φ[ ψ ◦ ψ ◦ ψ ◦ . . . ◦ ψ︸ ︷︷ ︸
k-times

(·, p), p] (2.12)

and

φ2(·, p) = φ[ψ ◦ ψ(·, p), p] = φ {ψ[ψ(·, p), p], p} (2.13)

Pseudo-LFT form as shown in Figure 2.1 is to be constructed. It is called

pseudo-LFT as it is in the LFT format but it can be only evaluated for a fixed

δx and δp. In the standard LFT-formulation, ∆φk is a constant matrix with a

structure. On the other hand, in the pseudo-LFT formulation, it is a varying

11
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vector evaluated on a specific combination of δx and δp.

From the pseudo-LFT shown in Figure 2.1 and the equivalency between µ-

bounds and the optimisation problem shown in [19], the maximum of |φk(x0, p)|

is bounded above as

max |φk(x0, p)| ≤
1

κ∗
, (2.14)

where κ∗ is the minimum κ satisfying the following singular condition:

|I2 −N∆| = 0, (2.15)

| · | is the determinant of matrix, I2 is the 2×2 identify matrix,

N =

0 1

1 φk(xc, pc)

 , (2.16a)

∆ =

∆φk 0

0 κδc

 , (2.16b)

|δc| = |δR + δIj| ≤ 1, δR and δI are the real numbers whose magnitude is less

than or equal to 1, and j =
√
−1. Note that κ is a positive number satisfying

the singular condition.

The singularity condition is expanded

|I2 −N∆| =

∣∣∣∣∣∣∣I2 −
 0 κδc

∆φk κφk(xc, pc)δc


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 −κδc

−∆φk 1− κφk(xc, pc)δc

∣∣∣∣∣∣∣
= 1− κφk(xc, pc)δc − κ∆φkδc

=
{

1− κ
[
φk(xc, pc) + ∆φk

]
δR
}
− κ

[
φk(xc, pc) + ∆φk

]
δIj = 0, (2.17)

where the real part and the imaginary part must be equal to zero at the same

12

Distribution A:  Approved for public release; distribution is unlimited.



time for the matrix to be singular. The real and the imaginary parts are equal

to zero as follows:

< (|I2 −N∆|) = 1− κ
[
φk(xc, pc) + ∆φk

]
δR = 0, (2.18a)

= (|I2 −N∆|) = −κ
[
φk(xc, pc) + ∆φk

]
δI = 0, (2.18b)

where <(·) and =(·) are the real part and the imaginary part of the argument,

respectively. Notice that φk(xc, pc) + ∆φk is equal to φk(x0, p) by the definition

and it is not equal to zero, in general.

Hence, δI must be equal to zero for the singularity condition. Therefore, the

following is the only case that both the real and the imaginary parts are equal

to zero: 1−κ
[
φk(xc, pc) + ∆φk

]
δR = 0 and δI = 0, i.e., the imaginary value of

δc is always equal to zero.

Take the absolute value of (2.18a) after moving the second term into the

right hand side of the equation as follows: 1 =
∣∣κ φk(x0, p)δR

∣∣, and it becomes

κ =
1

|φk(x0, p)δR |
. (2.19)

Finally, the singular problem for the bound estimation is formulated:

Problem 2.1.5 (Singular problem) Find the minimum κ, i.e. κ∗, satisfying

the following:

κ∗ =
1

max |φk(x0, p)δR|
=

1

max |φk(x0, p)|
(2.20)

where |δR| ≤ 1.

This looks trivial and it does not seem to help to find the bounds for φk(x0, p).

In the next section, bounds algorithms using a random sampling approach will

be presented.

Example 2.1.6 For the system shown in Example 2.1.4, the singular problem

is given by κ∗ = 1/max |e−2e−2px0|. �

13
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singular point

r

r

r

r

r

r-r

-r

-r

-r

-r

-r

Figure 2.2: Sign changes along the uncertain box boundary: as κ is smaller than
κ∗, all signs of g(δx, δp, κ) for the samples at the boundary are positive; on the
other hand, when κ̄ is greater than κ∗, there are red box samples and blue circle
samples whose sign of g(δx, δp, κ̄) is positive and negative, respectively.

2.2 Worst Bounds Estimation Algorithms

Define

g(δx, δp, κ) := 1− κ|φk(x0, p)| = 1− κ
∣∣φk(xc +Wxδx, pc +Wpδp)

∣∣ (2.21)

where −r ≤ δx ≤ r, −r ≤ δp ≤ r, κ > 0, and r ∈ (0, 1]. Note that g(·, ·, ·)

could be discontinuous as φk(·, ·) could be discontinuous. As shown in Figure

2.2, there are three cases:

• for κ < κ∗, having one type of samples, whose signs are all positive,

• for κ > κ∗ having two types of samples, whose signs are positive or nega-

tive,

• for κ = κ∗ having at least one singular point, where g(δx, δp, κ) is equal

to zero.

14
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Hence, whenever for a fixed κ, if two sign combinations are found, it becomes

the upper bound for κ∗, i.e., κ̄. Similarly, if only positive signs are found, it

becomes the lower bound, κ.

Example 2.2.1 For the system shown in Example 2.1.6, the function, g(δx, δp, κ),

is given by

g(δx, δp, κ) := 1− κ
∣∣∣∣e−2e−δp (1

2
+

1

2
δx

)∣∣∣∣
�

The bound estimation problem is given by

Problem 2.2.2 (κ∗-bounds estimation) For the following real-valued scalar func-

tion:

g(δx, δp, κ) = 1− κ
∣∣φk(xc +Wxδx, pc +Wpδp)

∣∣ , (2.22)

obtain the upper (κ̄) and lower (κ) bounds as follows:

κ ≤ κ∗ ≤ κ̄ (2.23)

Remark 2.2.3 The upper bound, κ̄, is a deterministic bound as we found the

negative sign but κ is probabilistic as it has always some danger to be failed

depending on the number of samples checked on the boundary. A safety factor

could be introduced in order to reduce the probability for the upper bound to be

failed.

Remark 2.2.4 Once the bounds for κ∗ are obtained, the bounds for |φk(·, ·)|,

is obtained such that φ
min

(or φ
max

) is equal to 1/κ̄ and φ̄min (or φ̄max) is equal

to 1/κ.

How to resolve whether they are the bounds for the minimum or the max-

imum will be presented later. In the following, bounds algorithms for a fixed
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radius uncertain space, r, which is greater than 0 and less than or equal to 1,

are presented and an algorithm for sweeping r in (0, 1] will be presented.

2.2.1 Fixed uncertain space radius: r ∈ (0, 1]

First part of the algorithm is for calculating the pre-κ bound.

Algorithm 2.2.5 Pre-κ estimation

1. Set N , the number of samples along the face of the uncertain box shown in

Figure 2.2, where the size of the box is r measured in terms of ∞-norm.

2. Set the initial boundary for κ such that ε ≤ κ ≤ E, where ε could be the

smallest positive number and E could be the largest positive number that

can be expressed in the computer.

3. Set the tolerance, ε, for the magnitude of the interval, [ε, E], i.e. E − ε

4. Set initial guess of κ, equal to (ε+ E)/2

5. For i = 1 to N

• Evaluate g(δx, δp, κ) for the given i-th sample of δk and δp

• if g(δx, δp, κ) < 0, then replace E by κ and break the for-loop, else

continue the for-loop

6. If i = N and g(δk, δp, κ) for all samples are positive, then replace ε by κ.

7. If E − ε is smaller than ε, then declare κp = E and stop. Otherwise, go

to step #4

Note that κp from the pre-κ estimation algorithm does not need to be tight

as long as it is smaller than κ∗. The reason to calculate κp using the above

algorithm before calculating bounds for φk(x0, p) is that the value of φk(x0, p)

can be positive and negative and the definition of κ∗ in (2.20) is given in terms

of the absolute value of φk(x0, p). On the other hand, if the sign of all possible

values of φk is either only positive or negative, this step can be skipped.
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In order to estimate the bounds for the maximum φk(x0, p), the following is

defined:

ḡ(δx, δp, κ) := 1− κ|φk(x0, p) + s/κp| (2.24)

where s is the shifting factor strictly greater than 1. As 1/κp > |φk(x0, p)|

can be guaranteed only in a probabilistic sense, the safety factor will make

sure the terms inside the absolute sign be positive. Then, the maximum of

|φk(x0, p) + s/κp| occurs at φ̄k(x0, p) + s/κp.

Algorithm 2.2.6 φ̄-bounds estimation Algorithm

1. Run the pre-κ estimation algorithm after replacing g(δx, δp, κ) by ḡ(δx, δp, κ)

2. Set κ = ε and κ̄ = E

3. Declare φ
max

= 1/κ̄−s/κp and φ̄max = sf/κ−s/κp, where sf is the safety

factor greater than 1. The smaller sf returns tighter bounds with greater

danger to be failed. The larger sf returns conservative bounds with less

probability to be failed.

Similarly, the bounds for the minimum is obtained by defining

g(δx, δp, κ) := 1− κ|φk(x0, p)− s/κp|, (2.25)

which make sure the maximum occurs at the minimum of φk, and executing the

following algorithm:

Algorithm 2.2.7 φ-bounds estimation Algorithm

1. Run the pre-κ estimation algorithm after replacing g(δx, δp, κ) by g(δx, δp, κ)

2. Set κ = ε and κ̄ = E

3. Declare φ
min

= 1/κ̄+ s/κp and φ̄min = sf/κ+ s/κp

17

Distribution A:  Approved for public release; distribution is unlimited.



Remark 2.2.8 The bounds calculated by the above algorithms are for a fixed

r. Hence, the global bounds must be obtained by finding the maximum bounds

among the ones for different r. However, the lower bound, the worst scenario

found so far, is always valid and the issue is how close it will be to the true

bound.

2.2.2 Sweeping uncertain space: r ∈ (0, 1]

The bounds calculated in the previous section is for a fixed r in (0, 1], i.e., κ(r)

and κ̄(r), where the argument indicates that the bounds are a function of r. To

find the global bounds, the algorithms in the previous must be performed in

r-space.

Algorithm 2.2.9 Global bounds

1. Set Nr, the number of samples in (0, 1).

2. Generate Nr uniformly distributed random numbers in (0, 1).

3. Initialise the set, R = {r0, r1, r2, . . . , rNr , rNr+1}, where r0 = 0, ri for

i = 1, 2, . . . , Nr, are the random numbers generated in #2, and rNr+1 = 1.

4. For all rs ∈ R perform the following:

• Run Algorithms 2.2.5, and 2.2.6 for φ̄ or 2.2.7 for φ.

• Using κ(rs) and κ̄(rs), calculate the bounds for φk, i.e., φ̄max, φ
max

or φ̄min, φ
min

.

5. For ri in R, compare the bounds difference with either ri−1 or ri+1 in R,

generate new ri towards the direction where the bounds improve.

6. If |rNr+1 − r0| is less than a tolerance, then stop. Otherwise, go to #4

with the updated R.

It is worth to note that the suggested algorithm is different from the blind

Monte-Carlo random search. The search performs through random samples but
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each iteration it converges towards a solution. As a result, the search space

reduces every iteration.

Remark 2.2.10 The total computational cost depends on how many times the

algorithms are executed for different r in (0, 1]. If the upper bounds could be

provided with less computation, the proposed algorithm could be used only for

finding lower bounds.

The proposed four algorithms in the above are embarrassingly parallel, i.e.

all sampling evaluations are independent from each other and it can be easily

implemented on parallel computer architectures. Therefore, it is a perfect prob-

lem to be solved on multi-core, distributed parallel computer nodes and GPU.

For some examples presented in the next chapter, the sampling evaluation part

of the algorithms is running on NVIDIA Tesla C2050 GPU, which has 449 cores

and the maximum number of threads per block is 1024. The algorithms on the

GPU is implemented using CUDA-GPU [27].

2.3 Probabilistic Properties of the Algorithms

A probabilistic guarantee of the performance for the algorithm finding φ̄ is to

be derived using the Chernoff bound [28]. Similar derivation can be obtained

for the other parts of the algorithms. If the number of samples, N , satisfies the

following inequality:

N ≥ 1

2ε2c
log

2

δc
(2.26)

then the following is true:

Probability {|p(r)− p̂(r)| ≤ εc} ≥ (1− δc) (2.27)

for εc ∈ (0, 1) and δc ∈ (0, 1), where

p(r) =

∑
Vi
VT

, (2.28)
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Vi is the connected volume, of which volume size is assumed to be strictly greater

than zero, where all values of φk in the volume are greater than the maximum

lower bound found by the algorithm, VT is the total volume of the search space,

p̂(r) =
nl
N
, (2.29)

and nl is the number of samples, which belongs to Vi . Based on these, we can

prove the following theorem:

Theorem 2.3.1 If the number of samples is equal to the Chernoff bound, (2.26)

and

p(r) ≥ 1

N
+

√
1

2N
log

2

δc
, (2.30)

then the probability of finding the larger lower bound than the current one using

the algorithm is greater than (1− δc).

Proof. Let N equal to the Chernoff bound in (2.26),

εc =

√
1

2N
log

2

δc
. (2.31)

From (2.27),

Probability {max [0, p(r)− εc] ≤ p̂(r) ≤ min [1, p(r) + εc]} ≥ 1− δc (2.32)

Substituting (2.29) and (2.31) into (2.32), then the probability of the following

inequality hold is greater than 1− δc:

max

[
0, p(r)−

√
1

2N
log

2

δc

]
≤ nl
N
≤ min [1, p(r) + εc] (2.33)

By substituting the lower bound for p(r), (2.30), into (2.33),

Probability

{
N max

(
0,

1

N

)
≤ nl

}
= Probability {1 ≤ nl} ≥ 1− δc (2.34)
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where Probability{1 ≤ nl} is the probability of finding at least one sample,

whose φk is greater than the current lower bound.
�

Note that if the true probability is in the range:

0 < p(r) <
1

N
+

√
1

2N
log

2

δc
, (2.35)

then the bound in (2.34) becomes

Probability {0 ≤ nl} ≥ 1− δc (2.36)

i.e. the lower bound is changed from 1 to 0 in the left hand side of bracket. As a

result, in this case we cannot say anything about the probability for improving

the lower bound.
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Chapter 3

Results and Discussion

3.1 “Hello World” Example

Consider the following φk, which is called Rosenbrock function:

φk(p) = 100
(
p2 − p21

)2
+ (1− p1)2, (3.1)

where it is assumed that there is no uncertainty in the initial state, and

−π ≤ pi ≤ π
√

2 (3.2)

for i = 1 and 2. Normalise pi such that

pi = pci + wpiδpi , (3.3)

where

wpi =
π
√

2− π
2

, (3.4a)

pci = −π +
π
√

2− π
2

, (3.4b)
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Figure 3.1: Rosenbrock function

and

Wp =

wp1 0

0 wp2

 . (3.5)

The function, (3.1), has one global minimum at p1 = 1 and p2 = 1, whose

function value is zero, and one global maximum at p1 = π
√

2 and p2 = −π,

whose function value is about 52,365.

For Algorithm 2.2.5, Pre-κ estimation, N = 1, 000, ε = 1 × 10−12, E =

1× 1012, ε = 0.001, and the calculated κp is equal to 1/52364. For Algorithms

2.2.6 and 2.2.7, sf = 1 + 10−6, s = 1.2, ε and E are the same as ones in Pre-κ

estimation. Finally, these have to be run for different r in Algorithm 2.2.9,

where Nr = 21 and the tolerance for |rNr+1 − r0| is 1 × 10−6. The MATLAB

programmes can be found in Appendix A.

From Algorithm 2.2.6, φk
max
≈ 52, 364.9 and φ̄kmax ≈ 52, 365.0, where the

true maximum is about 52,365. On the other hand, from Algorithm 2.2.7,

φk
min
≈ −0.00001 and φ̄kmin ≈ 0.063, where the true minimum is equal to 0.

Because of the probabilistic nature of the upper bounds, they cannot be trusted

with 100% confidence. However, the lower bounds are extremely close to the
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Table 3.1: Bounds for the minimum of high-dimensional Rosenbrock function,
where the true minimum, φmin, is equal to 0.

n 2 3 4 5 6
φ̄min 0.063 0.0906 0.1877 0.2513 -0.0664
φ
min

-0.00001 -0.00046 -0.00845 -0.0056 -0.2539

true values in this case.

High-dimensional Rosenbrock function can be defined as

φk(p) =
n−1∑
i=1

100
(
pi+1 − p2i

)2
+ (1− pi)2 (3.6)

where n is the dimension of the uncertain space. The global minimum occurs at

all pi = 1 for i = 1, 2, . . . , n and the minimum is zero. For different n, the bounds

for the minimum are shown in Table 3.1. The gap between the upper and the

lower bounds becomes larger as the dimension of the uncertain parameter space

being larger. It eventually fails at n = 6, where the upper bound is smaller than

0. To resolve this, the number of samples, N , is increased from 1000 to 2000.

And, the bounds obtained is φ̄min = 0.187 and φ
min

= −0.0683.

The relation between the bounds gap and the specified N is not known in

general. That is, how N must be chosen in order to make sure that the bounds

is correct is unknown. In addition, the required N increases exponentially as

the search space dimension increases. For example, from (2.27), N equal to

2000 gives 99.99% confidence in finding p(r) greater than 0.05%. However, p(r)

around the global minimum reduces quickly as the search dimension increases.

Practically, up to a certain range of n, it can be effectively overcome with

increased samples and by parallelising the algorithms over distributed/GPU

processing units.
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Figure 3.2: Bounds for x1,k

3.2 Oscillatory state

The following example is a discretised rotating system [20]:

x1,k+1

x2,k+1

 = φ(xk, p) =
1√

1 + p2

 1 p

−p 1


x1,k
x2,k

 (3.7)

In the original algorithm in [20], the uncertainty must be in a polynomial for-

mat and
√

1 + p2c was used instead of
√

1 + p2. Here, it does not need to be

polynomial and the original form,
√

1 + p2, is used. The intervals for the initial

state and the uncertain parameters, p, are given as follows: 0.9 ≤ x0,1 ≤ 1.1,

0.9 ≤ x0,2 ≤ 1.1, and 0.45 ≤ p ≤ 0.55.

Algorithm 2.2.5 firstly calculates the pre upper bound for |φ|, 1/κ, and set

s = 2. Secondly, the bounds for max(φ) and min(φ) are obtained by Algorithms

2.2.7 and 2.2.6. For many practical systems, extreme (both maximum and the

minimum) likely occurs at the boundary of at least one uncertain parameters.

Hence, frequently, sweeping algorithm over r, Algorithm 2.2.9, is not required

but the running algorithms for r = 1 is sufficient.

Figure 3.2 shows the bounds for x1,k, where k = 1, 2, . . . , 39, 40. The upper
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and lower bounds of the maximum and the minimum for r = 1 shown in Figure

3.2 are very close to each other. All trajectories from random simulations, where

the samples are from all r in (0, 1], are well bounded by the estimated bounds.

The calculation time becomes longer as k increases. A simple solution is

resetting the initial starting step once in a while as presented in [20]. This,

however, will reduce the computational time with the cost of less tight bounds.

On the other hand, the state bounds prediction in practice may not require very

large k.

3.3 ErbB Signalling Pathways

Epidermal growth factor receptor (ErbB) related pathways are among the most

extensively studied biological signalling networks [14]. Abnormality of ErbB

signalling pathways cause various human cancers [29, 30, 31]. In [14], an ErbB

mathematical model including 13 known ErbB ligands, Epidermal Growth Fac-

tor (EGF) and Heregulin (HGF) and Erk and Akt pathways are presented. It

has 504 states, 828 reactions and 226 kinetic parameters. The set of 504 differ-

ential equations is extracted from the simbiology model [14]. It is known that

this model is only valid up to a few hours and it is not necessary for this system

to be stable for infinite time interval. As long as the states remain in a certain

bound, the network works perfectly as it should be. Hence, the required robust-

ness analysis is obtaining the information about how the future state bounds

propagate with respect to the uncertain parameters.

One of the interesting biological features found in [14] using the model is

that parametric sensitivities of the dynamical system strongly depend on in-

put condition. This could be the reason that it provides so diverse responses.

Parametric uncertainties are introduced for those 226 kinetic parameters. The

uncertainty ranges are set to ±10% from the nominal values. Among the several

input conditions, the robustness is tested for the case of EGF equal to 5nM. The

bounds for phospholilated ErbB1, i.e. p-ErbB1, is shown in Figure 3.3. Again,
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Figure 3.3: Bounds for p-ErbB1 with respect to uncertainties in 226 kinetic
parameters

the upper and lower bounds for the maximum and the minimum are very close

to each other and only the upper bounds for both are indicated. All trajectories

from random simulations are well bounded by the estimated bounds. For the

bounds calculation, r is fixed to 1 and for the random simulations, r is randomly

selected between 0 and 1.

As the size of the system is relatively large, the integration part is imple-

mented over CUDA-GPU [27] and the programmes are shown in Appendix B.

3.4 Inverted Pendulum: Hybrid System

A switching controller for inverted pendulum stabilisation is shown in [32]. A

simplified version of the system is given by

θ̈ = p sin θ − u cos θ, (3.8)

where θ is the angle of pendulum measured from the upright position, p is the

uncertainty caused by some physical parameters, and u is the control input.
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Figure 3.4: Controller switching phase examples: 0 for waiting; 1 for the energy
dissipation control; and 2 for feedback linearisation control.

The total energy, E, including kinetic and potential energy is given by

E =
1

2
θ̇2 + (cos θ − 1)

The controller proposed in [32] has the following switching behaviours:

• Energy dissipation phase (phase 1): if |E| > ε, where ε is a positive real

number, then

u =
sign(E)θ̇

1 + |θ̇|
(3.9)

• Waiting phase (phase 0): if |E| ≤ ε and |θ̇|+ |θ| > δ,

u = 0 (3.10)

• Feedback linearisation control phase (phase 2): if |E| ≤ ε and |θ̇|+ |θ| ≤ δ,

u =
2θ̇ + θ + sin θ

cos θ
(3.11)

The ranges for the initial values are set to: |θ(0)| ≤ 19◦, |θ̇(0)| ≤ 20◦/s,

the uncertainty range is given by 0.1 ≤ p ≤ 1.9, i.e. ±90% uncertainty from

the nominal value, 1, and ε and δ are set to 0.1 and 0.8, respectively. An

example of the controller phase switching history is shown in Figure 3.4. The
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system dynamics is highly nonlinear because of its inherent nonlinearities and

the switching control.

The estimated bounds obtained with r = 1 are shown in Figure 3.5. Al-

though it only requires to calculate the bounds for one of either sign as the

system is symmetric, for the demonstration purpose, both bounds are calcu-

lated. At t = 10s, the bounds are between ±140◦ but most of the trajectories

found by Monte-Carlo simulations converge to zero. In fact, the Monte-Carlo

simulation method finds only one trajectory but still far from the bound at

t = 10s.

This clearly demonstrates the advantage of the proposed bound algorithm

over the blind Monte-Carlo simulations. The number of samples, N , for this

example is set to 1024x10 and the one for Monte-Carlo simulations is twice more

than N used. The calculation time of the presented algorithm for each instance

is less than 0.5s. Monte-Carlo simulations takes significantly longer time, about

3 minutes, which would vary depending on the number of samples. The Monte-

Carlo random simulation cannot find any solution closer to the lower bounds at

t = 10s.
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Figure 3.6: The experiment was performed in the rectangular box. The arrows
are the average current velocity at each location for seven different dates from
11th to 17th March of 2011 [33]. The red circles in the inset box are the
position information from GPS and the black thick line is the path obtained by
the navigation system.

3.5 Underwater Glider Navigation System

In this example, Kinematics for underwater glider is derived, and the bounds

for the future position of underwater glider are to be calculated using the er-

ror model including sea current and uncertainties in physical parameters. All

experimental data is obtained by Korea Institute of Ocean Science & Technol-

ogy (KIOST) in the area indicated in Figure 3.6.

3.5.1 Kinematics

The relation among the position vector of the underwater glider, rb, the sensor

position in the body-coordinates (B), rs, and the sensor position in the reference-

coordinates (R), r, is shown in Figure 3.7 and

rb = rB − rBs , (3.12)

where rb is the position vector expressed by two vectors in the right hand side,

and B in the superscripts is indicated that both vectors are expressed in the
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Figure 3.7: The origins of the reference-coordinates and the body-coordinates
are indicated by O and B, respectively. The body coordinates is attached to
the glider and rs is the sensor position vector relative to the origin of the body-
coordinates. g is the gravitational acceleration vector.

body-coordinates. Take the time-derivative of (3.12) and obtain the velocity,

vb =
d

dt
rb =

d

dt
rB − ω × rBs , (3.13)

where ṙBs is zero because the glider is assumed to be a rigid-body, and the

following transport theorem is used in the derivative [34]. Take one more time-

derivative of (3.13)

ab =
d

dt
vb =

d2

dt2
r− ω̇ × rs − ω × (ω × rs) , (3.14)

where the superscript, B, in the terms in the right hand side is dropped for

brevity, and they are all expressed in the body-coordinates.

The following quantity, aBacc, is the measurement of the 3-axis accelerometer

in the glider:

aBacc =
d2

dt2
r + CBR(ψ, θ, φ)gR, (3.15)

where CBR(ψ, θ, φ) is the direction cosine matrix, which changes the coordinates

from the reference to the body with the rotating sequence given by yaw(ψ),

pitch(θ), and roll(φ), gR = [0, 0,−g]T , the gravitational acceleration expressed
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in the reference coordinates, and g = 9.821 m/s2. Substitute d2r/dt2 in (3.14)

by the expression in (3.15)

ab =
d

dt
vb = aBacc − CBRgR − ω̇ × rs − ω × (ω × rs) . (3.16)

Rotational angular velocity of underwater vehicle is, in general, very slow, i.e.

‖ω‖ and ‖ω̇‖ are much smaller than ‖g‖. In the experiment the magnitudes of

two terms are at least 100-times smaller than the magnitude of the gravitational

acceleration. Hence,

ab ≈ aBacc − CBRgR. (3.17)

After transforming the coordinates of (3.17) into the reference-coordinates, inte-

grating it with respect to time provides the velocity and the position expressed

in the reference frame.

3.5.2 Error Model

Exocetus Coastal glider has a built-in navigation algorithm and it records vari-

ous navigation data. The following derivations are based on the log-file obtained

from the glider navigation system. The 3-Axis Acceleration measurements ex-

pressed in the body-coordinates, ãBacc, are directly available from the log-file and

it can be expressed as follows:

ãacc = ˜̈r + CBR(ψ, θ, φ)gR + bacc + nacc, (3.18)

where ˜̈r is the measured quantity by the calibrated accelerometer if there is no

stochastic noise and bias error, bacc is the accelerometer sensor bias error, nacc

is the white noise, and the accelerations caused by the control forces and the

external disturbances are all included in r̈.

Usually, in the estimation problem, ˜̈r is assumed to equal to r̈, which pre-

sumes infinite resolution and infinitesimal time constant, i.e. a perfect sensitiv-
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ity. In reality, including the limitations in the resolution and the finite response

time, and some unknown error sources, ˜̈r will be different from r̈ [35].

Attitude Error : The navigation algorithm provides the attitude information,

which includes some errors, δψ, δθ, and δφ, then

CBR = CBB′(δψ, δθ, δφ) CB
′

R (ψ̃, θ̃, φ̃), (3.19)

where B′ is the body-coordinates that the navigation system calculated, ψ̃, θ̃, φ̃

are roll, pitch and yaw angles returned from the navigation algorithm, and

δψ, δθ, δφ are the attitude angles of the true body-coordinates, B, with respect

to the calculated body-coordinates, B′.

Accelerometer Resolution Limit : The acceleration of the glider, (3.17), is

calculated as follows:

âb = ãBacc − CB
′

R gR, (3.20)

Once the bias correction is completed, the position information can be obtained

by integrating the corrected accelerometer output twice. The calculated path is

shown in the inset of Figure 3.6 indicated in the black solid line. The starting

position was initialised by the Grobal Positioning System (GPS) and it can be

considered as an accurate starting position initialisation. However, because of

acceleration below the sensor resolution is accumulated during the diving, the

position at the end, just before updated by GPS again, has several km error

after about 3 hours operation under the water. The main cause of this error

might be the current as the final position is almost exactly drifted towards the

directions where the average current flows. The similar drifts are observed in

another three divings [36].

Sea Current Uncertainty : ∆v is the relative velocity of the glider in the
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horizontal plane, i.e.

∆v =


v̂crtE

v̂crtN

0

−

vx

vy

0

 , (3.21)

v̂crtE and v̂crtN are the estimated sea current velocity in the east or the north direc-

tion, respectively, whose magnitude is around 1kt (≈ 0.5 m/s) in the maximum,

vcrtE = v̂crtE (1 + δvE), (3.22a)

vcrtN = v̂crtN (1 + δvN), (3.22b)

vcrtE and vcrtN are the true sea current velocity in the east or the north direction,

respectively, and δvE and δvN are the uncertainties.

Parameters Uncertainty in Drag : To quantify how much acceleration would

be generated from the current, the following equation is used [37]:

D =
1

2
ρ ‖∆v‖2 ADCD (1 + δD) , (3.23)

where ρ is the sea water density, which is around 1020 kg/m3, AD is the cross

section area of the glider hull, which is about 824 cm2, and CD is the drag

coefficient set to 0.4, which is adopted from [37]. Unlike the example shown

in [37], the glider has a small wing and the induced drag is ignored. As these

physical parameters are estimated using a similar size glider, the calculated

drag has some error and it is represented by δD. With the nominal values, i.e.

δD = 0, the drag is about 4N when vx = 0, and vy = 0. It corresponds to the

acceleration of 0.04 m/s2 (≈ 4N/109kg). The acceleration, 0.04 m/s2, is the

possible maximum value when the glider is stationary. The acceleration caused

by the current would be much smaller than the maximum as the glider usually
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does not fly in the exact opposite to the current. Then, these tiny current effect

would be completely blocked by the sensor noise and the external fluctuations.

3.5.3 Longitude/Latitude Bound Estimation

The acceleration caused by the drag with considering the sea current is given

by

w ≈ −CRB′∆r̈ =
D

m
eD, (3.24)

where m is the mass of the glider and eD is the unit vector towards the cur-

rent direction. Sea current near the surface is mainly caused by wind and the

temperature differences. The vertical direction is negligible in the near surface

depth compared to the magnitudes of the horizontal direction components [38].

Hence,

eD =


∆v

‖∆v‖
, for ‖∆v‖ > 0

0, otherwise

, (3.25)

Scenario #1 : Set the uncertain parameters as follows:

−5◦ ≤δψ ≤ 5◦, (3.26a)

−5◦ ≤δθ ≤ 5◦, (3.26b)

−5◦ ≤δφ ≤ 5◦, (3.26c)

−0.2 [m/s] ≤δvE ≤ 0.2 [m/s], (3.26d)

−0.2 [m/s] ≤δvN ≤ 0.2 [m/s], (3.26e)

−0.1 ≤δD ≤ 0.1, (3.26f)

and the nominal values of the sea current velocity are: v̂crtE = −0.1165 m/s and
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Figure 3.8: Paths after 1 minutes by Monte Carlo simulations are indicated by
green lines and the lower bounds are indicated by dashed lines. The dot at the
end of each path is the final location of the glider. All dots are inside the box
defined by the dashed line.

v̂crtN = 0.3948 m/s. The bounds for the possible longitude and latitude coordi-

nates after 60s are calculated with N = 100 and r is fixed to 1. The four lower

bounds are indicated in Figure 3.8. All paths start at the same coordinates

and the final position for each random simulation is indicated by blue dot. All

final positions are well bounded by the lower bound. The upper bounds are not

indicated.

Scenario #2 : As the uncertain ranges in Scenario #1 are too big for longer

time horizon, i.e., the paths will spread broad region with longer final time,

reduce the uncertain parameter ranges by 10 as follows:

−0.5◦ ≤δψ ≤ 0.5◦, (3.27a)

−0.5◦ ≤δθ ≤ 0.5◦, (3.27b)

−0.5◦ ≤δφ ≤ 0.5◦, (3.27c)

−0.02 [m/s] ≤δvE ≤ 0.02 [m/s], (3.27d)

−0.02 [m/s] ≤δvN ≤ 0.02 [m/s], (3.27e)

−0.01 ≤δD ≤ 0.01. (3.27f)
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Figure 3.9: Paths after 1 hour by Monte Carlo simulations are indicated by
green lines and the lower bounds are indicated by dashed lines. The dot at the
end of each path is the final location of the glider. All dots are inside the box
defined by the dashed line.

The final time is set to 1 hour. The lower bounds shown in Figure 3.9 confine

tightly all the possible positions after 1 hour. The number of Monte Carlo

simulation is 500.
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Chapter 4

Conclusions

Algorithms for calculating state bounds for general nonlinear systems with un-

certain initial states and parameters are developed. The algorithms combine

µ-formulation for optimisation problem and pseudo-LFT for LFT-free formula-

tion. The algorithms have several advantages including: 1) no effort to obtain

an LFT form; 2) easy to parallelise on distributed computers; and 3) applicable

to many types of functions including the one having finite number of disconti-

nuity. The algorithms are applied to multi-dimensional Rosenbrock function; a

simple oscillatory nonlinear discrete system; a high-dimensional biological model

for ErbB signalling pathways; a hybrid system with discontinuity; and finally,

navigation error propagation of underwater glider.

It is highly desirable to have numerically efficient algorithms to estimate state

bounds for general nonlinear systems. Especially, the input-output robustness

analysis with respect to various parametric perturbations are one of the main

interest in the robustness of biological networks; autonomous mobile robots

operating in uncertain environment requires to predict the future state bounds

in order to plan or re-plan its behaviour; predicting a group of space debris is

very important for the safety of space mission. The suggested algorithms could

be the main tool to analyse such complex nonlinear systems with uncertainties.

As demonstrated by the multi-dimensional Rosenbrock functions, however,
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the gap between the lower bounds and the upper bounds increases, in general,

as the search dimension increases. This is the inherent complexity of NP-hard

problem, which cannot be overcome unless NP=P. On the other hand, up to

certain dimensions, tighter gap can be obtained with much shorter computation

time by parallelising the algorithms. We demonstrated the possibility of parallel

processing in real-time using GPU. In future, it will be possible to perform real-

time optimisation for predicting uncertain bounds and adjusting control gains

to reduce the bounds with fast massive parallel processing computation.

Finally, it is worth to note that a similar algorithm to the proposed ones was

presented in [39], which is called Luus-Jaakola algorithm, and its convergence

property was shown in [40]. It uses random sampling and re-sampling based on

the values from the random samples. It was presented in 1973 and its usages

were limited to small size problems because of a lot restricted computational

power in the past. The re-sampling method could be adopted in the proposed

algorithm to reduce the computational cost.
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Appendix A

Hello World example

A.1 main get max all.m

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Main: States bound calculation for many k steps
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 %
5 % See #1, #2 and #3 below
6

7 % Programmed by Jongrae <Jongrae.Kim@glasgow.ac.uk>
8 % University of Glasgow
9 % Biomedical Engineering

10 % RobustLab: http://www.robustlab.org
11

12 % Change Log:
13 % 1. 15th January 2014
14 % To solve optimisation problem
15 % 2. 15th Feburuary 2014
16 % To correct algorithm for finding solutions inside boundary
17 % 3. 1st April 2014
18 % To find the maximum or the minimum; remove the positiveness condition
19

20 clear all;
21

22 %%
23 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % 1. Algorithm Parameters that you may want to adjust
25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 % number of samples in one Period
28 num steps = 1;
29 num delta sample = 1000;
30 % lower with less computation but higher risk to be failed
31 % higher with less risk but more computational burden
32

33 safety factor max = 1+1e−6;
34 safety factor min = 1+1e−6;
35 % always greater than or equal to 1
36 % smaller would give tighter upper bounds with higher risk to be failed,
37 % larger would have less possbility to be failed but less tight upper bounds
38

39 % find minimum or maximum
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40 find min = true; % true for minimum; false for maximum
41

42 % Range of k, where k for k*delta c
43 box init = [1e−12 1e12];%[−0.5 1]*1e3;
44 % For box init = [1e−12 1e12];
45 % you should know roughy where the k optimal would be.
46 % i.e, here I am quite sure that 1e−2 < f < 1e12
47 % if your calculation failed, then you may adjust this
48

49 % Use adaptive box & samplings
50 use adaptive sampling = false;
51 num replace = floor(num delta sample*0.8+0.5);
52

53 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 % 2. the function f(x,p) related setting
55 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 % parameter bounds
57 x dim = 2;
58 xL = −pi*ones(x dim,1);
59 xU = sqrt(2)*pi*ones(x dim,1);
60

61 s scale = 1.2;
62

63 % uncertain parameters dimension
64 state dim = length(xL);
65

66 w x = (xU−xL)/2;
67 x centre = xL+w x;
68

69 w x prev = w x;
70 x centre prev = x centre;
71

72 w x org = w x;
73 x centre org = x centre;
74

75 %%
76 %==================================================
77 % No need to change from here
78 %==================================================
79 % find maximum of |f |
80 tic
81 c max = 0;
82 [x upper max, x lower max, sol opt, weight opt] = ...
83 multi cal state bounds([], ...
84 box init,num steps,num delta sample,[],state dim, ...
85 [],[],[],x centre,w x,[], ...
86 [], [], num replace,[],c max, find min);
87 opt x = x centre + weight opt*sol opt(:).*w x(:);
88 fprintf('Optimal Sol: x = (');
89 for idx=1:state dim
90 fprintf('%4.2f ',opt x(idx));
91 end
92 fprintf(')\n');
93

94 x opt = x centre(:)' + (sol opt(:).*w x(:))'*weight opt;
95 opt cost = get f delta(sol opt,x centre,w x*weight opt,0);
96 fprintf('Optimal Cost = %10.5f\n',opt cost−c max);
97 fprintf('Cost bound = [%10.5f, %10.5f]\n', ...
98 x lower max−c max,x upper max−c max);
99

100 cal time = toc;
101 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
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102 fprintf('Calculation Time = %6.3f [s]\n',cal time);
103 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
104

105 f abs max = opt cost;
106

107 % find maximum of |f+f abs max*2|
108 tic
109 c max = f abs max*s scale;
110 [x upper max, x lower max, sol opt, weight opt] = ...
111 multi cal state bounds([], ...
112 box init,num steps,num delta sample,[],state dim, ...
113 [],[],[],x centre,w x,[], ...
114 [], [], num replace,[],c max, find min);
115 opt x = x centre + weight opt*sol opt(:).*w x(:);
116 fprintf('Optimal Sol: x = (');
117 for idx=1:state dim
118 fprintf('%4.2f ',opt x(idx));
119 end
120 fprintf(')\n');
121

122 opt cost = get f delta(sol opt,x centre,w x*weight opt,0);
123 fprintf('Optimal Cost = %10.5f\n',opt cost);
124 fprintf('Cost bound = [%10.5f, %10.5f]\n',x lower max−c max, ...
125 safety factor max*x upper max−c max);
126

127 cal time = toc;
128 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
129 fprintf('Calculation Time = %6.3f [s]\n',cal time);
130 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
131

132 % find minimum of |f−c max*2|
133 tic
134 c max = −f abs max*s scale;
135 [x upper max, x lower max, sol opt, weight opt] = multi cal state bounds([], ...
136 box init,num steps,num delta sample,[],state dim, ...
137 [],[],[],x centre,w x,[], ...
138 [], [], num replace,[],c max, find min);
139 opt x = x centre + weight opt*sol opt(:).*w x(:);
140 fprintf('Optimal Sol: x = (');
141 for idx=1:state dim
142 fprintf('%4.2f ',opt x(idx));
143 end
144 fprintf(')\n');
145

146 opt cost = get f delta(sol opt,x centre,w x*weight opt,0);
147 fprintf('Optimal Cost = %10.5f\n',opt cost);
148 fprintf('Cost bound = [%10.5f, %10.5f]\n',x lower max+c max, ...
149 safety factor min*x upper max+c max);
150

151 cal time = toc;
152 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
153 fprintf('Calculation Time = %6.3f [s]\n',cal time);
154 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
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A.2 multi cal state bounds.m

1 function [x upper max global, x lower max global, extreme delta, extreme w] = ...
2 multi cal state bounds(k step, box init, ...
3 num steps, num delta sample,delta dim,state dim,which x, ...
4 p centre,w p,x centre,w x,safety factor, ...
5 f real prev, delta px prev, num replace, ...
6 reset steps, c max, find min)
7

8 % multiple box size
9 Nr = 21;

10 w box size = linspace(0,1,Nr);
11 max iter = 10000;
12 min iter = 10;
13 w box min size = 1e−6;
14

15 w x = w x(:)';
16 [zero cost, ] = get f delta(zeros(size(w x)),x centre,w x,c max);
17

18 %% calcualte upper and lower bounds for the maximum
19 not converge sw = true;
20 x upper max global = −inf;
21 x lower max global = zero cost;
22 extreme delta = zeros(size(w x(:)'));
23 extreme w = 0;
24

25 current iter = 1;
26 prev opt x = zeros(size(w x));
27 count converge = 0;
28 w prev box = [];
29

30 while not converge sw
31

32 sol opt all = zeros(length(w box size),state dim);
33 opt cost all = zeros(length(w box size),1);
34 opt cost all(1) = zero cost;
35

36 current w range = w box size(end) − w box size(1);
37

38 for wdx = 2:length(w box size)
39

40 w x current = w x*w box size(wdx);
41

42 [x upper max, x lower max, sol opt] = cal state bounds([], ...
43 box init,num steps,num delta sample,[],state dim, ...
44 [],[],[],x centre,w x current,[], ...
45 [], [], num replace,[],c max, find min);
46

47 opt cost = 0;
48 if ˜isempty(sol opt)
49 [opt cost, ] = get f delta(sol opt,x centre,w x current,c max);
50 end
51

52 if x upper max > x upper max global
53 x upper max global = x upper max;
54 end
55

56 if x lower max > x lower max global
57 x lower max global = x lower max;
58 extreme delta = sol opt(:)';
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59 extreme w = w box size(wdx);
60 end
61

62 sol opt all(wdx,:) = sol opt(:)';
63 opt cost all(wdx) = opt cost;
64

65 end
66 cost diff sgn = sign(diff(opt cost all));
67 nbhd idx = [2:length(w box size)] + cost diff sgn(:)';
68 if nbhd idx(end)>length(w box size)
69 nbhd idx(end) = length(w box size);
70 end
71

72 figure(1); clf;
73 [aa,bb] = sort(w box size);
74 plot(aa,opt cost all(bb),'o−');
75 hold on;
76 plot(extreme w, x lower max global, 'rˆ');
77 pause(0.01);
78

79 dw = (w box size(nbhd idx)−w box size(2:end))/2;
80

81 if dw(1) > 0
82 zero cost = opt cost all(2);
83 w box size(1) = w box size(2);
84 end
85

86 dw = (w box size(nbhd idx)−w box size(2:end)); dw = dw.*rand(size(dw));
87

88 w box size = w box size + [0 dw(:)'];
89 w box size = sort(w box size);
90

91 if w box size(end) > 1
92 w box size(end) = 1;
93 end
94

95 [aa,bb]=min(abs(w box size−extreme w));
96 w box size(bb) = extreme w;
97

98 %−−−−−−−−−−−
99 if ˜isempty(w prev box)

100 if length(w box size)==length(w prev box)
101 if norm(w box size−w prev box)==0
102 not converge sw = false;
103 end
104 end
105 end
106 if length(w box size)==1
107 not converge sw = false;
108 end
109 w prev box = w box size;
110 %−−−−−−−−−−−−−
111

112 new w range = abs(w box size(end)−w box size(1));
113 if abs(new w range − current w range) < w box min size
114 count converge = count converge + 1;
115 else
116 count converge = 0;
117 end
118

119 if new w range < w box min size | | current iter > max iter
120 not converge sw = false;
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121 end
122

123 if count converge > min iter
124 w box size = extreme w + extreme w*randn(size(w box size))*new w range/10;
125 w box size = sort(w box size);
126 end
127

128 %−−−−−−−−−−−−−−−−−−−−−−−−−
129 % intermediate output
130 %−−−−−−−−−−−−−−−−−−−−−−−−−
131 opt x = x centre + extreme w*extreme delta(:).*w x(:);
132 fprintf('%d−th iteration: Current Optimal Sol: x = (',current iter);
133 for idx=1:state dim
134 fprintf('%6.4f ',opt x(idx));
135 end
136 fprintf(');');
137 fprintf('dw = %6.4f < %6.4f ?\n', abs(w box size(end)−w box size(1)), w box min size);
138 %−−−−−−−−−−−−−−−−−−−−−−−−−
139

140 current iter = current iter + 1;
141

142 end
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A.3 cal state bounds.m

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % States bound calculation for discrete nonlinear systems using mu−bounds
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 function [x upper, x lower, extreme delta] = cal state bounds(k step, box init, ...
5 num steps, num delta sample,delta dim,state dim,which x, ...
6 p centre,w p,x centre,w x,safety factor, ...
7 f real prev, delta px prev, num replace, ...
8 reset steps, c max, find min)
9 % Input:

10 % k step: bounds for k step value of f(x,d)
11 %
12 % box init: initial search range of k, k is searched in the range of
13 % box init(1) <= k <= box init(2)
14 %
15 % num delta sample: number of random samples along the 1−norm box edge
16 %
17 % delta dim: how many uncertain parameters
18 %
19 % state dim: dimension of state vector x
20 %
21 % which x: which x's bounds to be calculated, range = [1 state dim]
22 %
23 % p centre: vector for the centres of uncertain parameters
24 %
25 % w p: weighting vector for the uncertain parameters so that p delta is
26 % between −1 and 1
27 %
28 % x centre: vector for the centres of state vector
29 %
30 % w x: weighting vector for the state vector so that x delta is
31 % between −1 and 1
32 %
33 % safety factor: safety factor for the upper bound, greater than 1,
34 % smaller value may give more tighter bound but with higher risk
35 % that may be wrong, this only applies to the upper bound
36 %
37 % c min max: adjusting value for obtain bounds for max(f) and min(f)
38 %
39 % Output:
40 % x upper: upper bound
41 % x lower: lower bound
42 % f min max: minimum and maximum values of f found during the sampling
43

44 % Programmed by Jongrae <Jongrae.Kim@glasgow.ac.uk>
45 % University of Glasgow
46 % Biomedical Engineering
47 % RobustLab: http://www.robustlab.org
48

49 %%
50 tol = 1e−3;
51

52 %%
53 current big box = box init(2);
54 current small box = box init(1);
55 f min max = [inf −inf];
56 current delta px worst = inf;
57 x lower = −inf;
58
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59 if isempty(delta dim)
60 delta dim = 0;
61 end
62

63 feasible set sw = true;
64

65 while isinf(current delta px worst(1))
66

67 init box saved = [current small box current big box];
68

69 while abs(current big box−current small box) > tol
70

71 current box size = (current big box + current small box)/2;
72 current k = current box size;
73

74 % uniform sample in the 1−norm box random face
75 delta x = 2*rand(num delta sample,delta dim+state dim,1)−1;
76 rand face = randi(delta dim+state dim,num delta sample,1);
77 idx face = sub2ind([num delta sample delta dim+state dim], ...
78 (1:num delta sample)',rand face);
79 delta x(idx face) = sign(rand(num delta sample,1)−0.5);
80

81 k delta c = current k;
82 [f real org, f delta] = I ND(delta x, k delta c, x centre, w x, c max, find min);
83 [f real, idx f real min] = min(f real org);
84

85 if f real < 0
86

87 current delta px worst = delta x(idx f real min,:);
88

89 current big box = current box size;
90

91 cand k = 1/(abs(f delta(idx f real min,:)));
92 if cand k < current k
93 current k = cand k;
94 x lower cand = 1/cand k;
95 else
96 x lower cand = 1/current k;
97 current k upper = current k;
98 end
99

100 if x lower cand > x lower
101 x lower = x lower cand;
102 current k upper = current k;
103 extreme delta = delta x(idx f real min,:);
104 end
105 end
106

107 if f real > 0
108 current small box = current box size;
109 end
110

111 % no feasible set
112 if sum(abs(f delta))==0 && length(f delta) > 1
113 x upper = 0;
114 x lower = 0;
115 extreme delta = delta x(1,:); % arbitrary delta for flat cost function
116 feasible set sw = false;
117 break;
118 end
119

120 end % of while: check if the boxes are close enough?
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121

122 %%
123

124 % if never find f real < 0, then adjust the initial box sizes
125 current big box = init box saved(2)*2;
126 current small box = max([1/pi init box saved(1)/2]);
127

128 if ˜feasible set sw
129 break;
130 end
131

132 end % of current delta px worst == inf?
133

134 %%
135 % Refining the x upper, i.e., k lower
136 if feasible set sw
137

138 upper bd not converge = true;
139

140 epsilon box = tol*10;
141 k box = [current k upper/10 current k upper];
142

143 while upper bd not converge
144

145 for idx=1:num steps
146

147 % sample in the epsilon−norm box random face
148 delta x = 2*rand(num delta sample*10,delta dim+state dim,1)−1;
149 delta x = epsilon box*delta x;
150 delta x = kron(ones(num delta sample*10,1),current delta px worst) + delta x;
151

152 k delta c = k box(1) + abs(diff(k box))/2;
153

154 [f real org, f delta] = I ND(delta x, k delta c, x centre, ...
155 w x, c max, find min);
156

157 f real = min(f real org);
158 f delta min = min(f delta,[],1);
159 f delta max = max(f delta,[],1);
160

161 if f delta min < f min max(1)
162 f min max(1) = f delta min;
163 end
164 if f delta max > f min max(2)
165 f min max(2) = f delta max;
166 end
167

168 if f real < 0
169 k box(2) = k delta c;
170 break;
171 end
172

173 end
174

175 if ((idx==num steps) && (f real > 0))
176 upper bd not converge = false;
177 x upper = 1/k box(2);
178 end
179

180 end % of while
181

182 end % of if ˜feasible set sw
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A.4 I ND.m

1 function [f real, f delta] = I ND(delta x, k delta c, x centre, w x, c max, find min)
2 % Input:
3 % k step: bounds for k step value of f(x,d)
4 %
5 % delta px: vector including delta p and delta x
6 % e.g. delta px = [ delta p(1); delta p(2); delta x1; delta x2]
7 %
8 % k delta c: current k*delta c
9 %

10 % which x: which x's bounds to be calculated, range = [1 state dim]
11 %
12 % p centre: vector for the centres of uncertain parameters
13 %
14 % w p: weighting vector for the uncertain parameters so that p delta is
15 % between −1 and 1
16 %
17 % x centre: vector for the centres of state vector
18 %
19 % w x: weighting vector for the state vector so that x delta is
20 % between −1 and 1
21 %
22 % c min max: adjusting value for obtain bounds for max(f) and min(f)
23 %
24 % Output:
25 % f real: real part of det(I−N Delta)
26 % f delta: f evaluated at the sampled point
27

28 % Programmed by Jongrae <Jongrae.Kim@glasgow.ac.uk>
29 % University of Glasgow
30 % Biomedical Engineering
31 % RobustLab: http://www.robustlab.org
32

33 f delta = get f delta(delta x,x centre, w x, c max);
34 f real = 1 − k delta c*abs(f delta);
35

36 end
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A.5 get f delta.m

1 function f delta = get f delta(delta x, x centre, w x, c max)
2 % Input:
3 % k step: bounds for k step value of f(x,d)
4 %
5 % delta px: vector including delta p and delta x
6 % e.g. delta px = [ delta p(1); delta p(2); delta x1; delta x2]
7 %
8 % p centre: vector for the centres of uncertain parameters
9 %

10 % w p: weighting vector for the uncertain parameters so that p delta is
11 % between −1 and 1
12 %
13 % x centre: vector for the centres of state vector
14 %
15 % w x: weighting vector for the state vector so that x delta is
16 % between −1 and 1
17 %
18 % Output:
19 % f delta: function f evaluated at the sampled x and p
20

21 % Programmed by Jongrae <Jongrae.Kim@glasgow.ac.uk>
22 % University of Glasgow
23 % Biomedical Engineering
24 % RobustLab: http://www.robustlab.org
25

26 %% DO NOT CHANGE HERE
27

28 % pertubed states
29 n delta = size(delta x,1);
30 delta dim = size(delta x,2);
31

32 x centre = x centre(:)';
33 w x = w x(:)';
34 x delta = kron(ones(n delta,1),x centre) +kron(ones(n delta,1),w x).*delta x;
35

36 %% ONLY CHANGE BELOW
37 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 % f(x,p)
39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 f delta = zeros(size(x delta,1),1);
41

42 for idx=1:1:delta dim−1
43 x1 = x delta(:,idx);
44 x2 = x delta(:,idx+1);
45 f delta = f delta + 100*(x2−x1.ˆ2).ˆ2 + (1−x1).ˆ2;
46 end
47

48 f delta = abs(f delta + c max);
49 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50

51 end
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Appendix B

ErbB Signalling Pathways:
GPU Example

B.1 state bounds for many steps main.m

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Main: States bound calculation for many k steps
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 %
5 % See #1, #2 and #3 below
6

7 % Programmed by Jongrae <Jongrae.Kim@glasgow.ac.uk>
8 % University of Glasgow
9 % Biomedical Engineering

10 % RobustLab: http://www.robustlab.org
11

12 clear all;
13

14 global function handle;
15

16 num data = 1024;%*10;
17 function handle= ...
18 parallel.gpu.CUDAKernel('get f delta ptx vector form.ptx','get f delta ptx vector form.cu');
19 function handle.GridSize(1) = ceil(num data/function handle.MaxThreadsPerBlock);
20 num thread = min([num data function handle.MaxThreadsPerBlock]);
21 function handle.ThreadBlockSize(1) = num thread;
22

23 %%
24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 % 1. Algorithm Parameters that you may want to adjust
26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 load initial condition;
28

29 dt=0.1;
30

31 % number of samples in one Period
32 num steps = 1;
33 num delta sample = num data;%1024*10;
34 % lower with less computation but higher risk to be failed
35 % higher with less risk but more computational burden
36
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37 safety factor max = 1.00 + 1e−9;
38 safety factor min = 1.00 + 1e−9;
39 % always greater than or equal to 1
40 % smaller would give tighter upper bounds with higher risk to be
41 % failed
42 % larger would have less possbility to be failed but less
43 % tight upper bounds
44

45 s cale = 2;
46

47 % uncertain parameters dimension
48 delta dim = 227; % how many uncertain parameters
49 state dim = 504; % dimension of state vector x
50 which x = 1; % which x's bounds to be calculated
51

52 % Range of k, where k for k*delta c
53 box init = [1e−20 1e20];
54 % you should know roughy where the k optimal would be.
55 % i.e, here I am quite sure that 1e−2 < f < 1e12
56 % if your calculation failed, then you may adjust this
57

58 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 % 2. the function f(x,p) related setting
60 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 % what k−th step value bounds for x k = f(x k−1, p)
62 k step all = 1:300;
63 reset steps = 3000;
64

65 % parameter bounds:
66 get p nominal; % p centre from here
67 w p = p centre*0.1;
68

69 % state bounds
70 w x = ((double(x initial==0)+x initial)*1e−6)*0;
71 w x(w x>1e−6)=1e−6*0;
72 x centre = x initial;
73

74 w x prev = w x;
75 x centre prev = x centre;
76

77 w x org = w x;
78 x centre org = x centre;
79

80 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
81 % 3. Finally, you may want to use your own f(x,p) function.
82 % Then, update "get f delta.m"
83 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84

85 %%
86 %==================================================
87 % No need to change from here
88 %==================================================
89 for k step = k step all
90

91 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92 % reset uncertain parameter range
93 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 if (mod(k step,reset steps)==1) && (k step > 1)
95

96 x centre t(which x) = (x upper max all(end) + x upper min all(end))/2;
97 w x t(which x) = (x upper max all(end) − x upper min all(end))/2;
98
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99 x remain=setdiff(1:state dim,which x);
100

101 for x step=1:length(x remain)
102

103 current x = x remain(x step);
104

105 [x upper t,t1,t2] = cal state bounds gpu(reset steps, ...
106 box init,num steps,num delta sample,delta dim,state dim, ...
107 current x,p centre,w p,x centre prev,w x prev, ...
108 safety factor,reset steps*2,[],dt);
109 c max t = 2*x upper t; c min t = −2*x upper t;
110

111 [x upper max t,t1,t2] = cal state bounds gpu(reset steps, ...
112 box init,num steps,num delta sample,delta dim,state dim, ...
113 current x,p centre,w p,x centre prev,w x prev, ...
114 safety factor,reset steps*2,c max t,dt);
115 x upper max t = x upper max t − c max t;
116

117 [x upper min t,t1,t2] = cal state bounds gpu(reset steps, ...
118 box init,num steps,num delta sample,delta dim,state dim, ...
119 current x,p centre,w p,x centre prev,w x prev, ...
120 safety factor,reset steps*2,c min t,dt);
121 x upper min t = −x upper min t − c min t;
122

123 x centre t(current x) = (x upper max t+x upper min t)/2;
124 w x t(current x) = (x upper max t−x upper min t)/2;
125

126 end
127

128 x centre = x centre t(:);
129 x centre prev = x centre;
130 w x = w x t(:);
131 w x prev = w x;
132

133 end
134

135 %−−−−−−−−−−−−−−−−−−−−−−−−
136 % Calculate Bounds
137 %−−−−−−−−−−−−−−−−−−−−−−−−
138 % calculate c max and c min
139 fprintf('==============================================\n');
140 fprintf(' Calculate c max and c min\n');
141 fprintf('==============================================\n');
142 [x upper, x lower, f min max 1] = cal state bounds gpu(k step, ...
143 box init,num steps,num delta sample,delta dim,state dim, ...
144 which x,p centre,w p,x centre,w x,safety factor,reset steps,[],dt);
145 c max = s scale*x upper; % to just make sure all positive so it's doubled
146 c min = −s scale*x upper; % for the similar reason, make it all negative
147

148 % calcualte upper and lower bounds for the maximum
149 fprintf('==============================================\n');
150 fprintf(' Calculate bounds for maximum\n');
151 fprintf('==============================================\n');
152 [x upper max, x lower max, f min max 2] = cal state bounds gpu(k step, ...
153 box init,num steps,num delta sample,delta dim,state dim, ...
154 which x,p centre,w p,x centre,w x,safety factor max,reset steps,c max,dt);
155 x upper max = x upper max − c max;
156 x lower max = x lower max − c max;
157

158 % calculate upper and lower bounds for the minimum
159 fprintf('==============================================\n');
160 fprintf(' Calculate bounds for minimum\n');
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161 fprintf('==============================================\n');
162 [x upper min, x lower min, f min max 3] = cal state bounds gpu(k step, ...
163 box init,num steps,num delta sample,delta dim,state dim, ...
164 which x,p centre,w p,x centre,w x,safety factor min,reset steps,c min,dt);
165 x upper min = −x upper min − c min;
166 x lower min = −x lower min − c min;
167

168 f min max by simulation = [f min max 1; f min max 2; f min max 3];
169 f min max by simulation = ...
170 [min(f min max by simulation(:,1)) max(f min max by simulation(:,2))];
171

172 x upper max all(k step) = x upper max;
173 x lower max all(k step) = x lower max;
174

175 x upper min all(k step) = x upper min;
176 x lower min all(k step) = x lower min;
177

178 end
179

180 figure;
181 % maximum
182 k step all = [0 k step all];
183 plot(k step all*dt, [x centre org(which x)+w x org(which x) x upper max all],'ro−');
184 hold on;
185

186 % minimum
187 plot(k step all*dt, [x centre org(which x)−w x org(which x) x upper min all],'bx−');
188 xlabel('k');
189 ylabel str = sprintf('State x%d',which x);
190 ylabel(ylabel str);
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B.2 cal state bounds gpu.m

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % States bound calculation for discrete nonlinear systems using mu−bounds
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 function [x upper, x lower, f min max] = cal state bounds gpu(k step, box init, ...
5 num steps, num delta sample,delta dim,state dim,which x, ...
6 p centre,w p,x centre,w x,safety factor,reset steps,c min max,dt)
7 % Input:
8 % k step: bounds for k step value of f(x,d)
9 %

10 % box init: initial search range of k, k is searched in the range of
11 % box init(1) <= k <= box init(2)
12 %
13 % num delta sample: number of random samples along the 1−norm box edge
14 %
15 % delta dim: how many uncertain parameters
16 %
17 % state dim: dimension of state vector x
18 %
19 % which x: which x's bounds to be calculated, range = [1 state dim]
20 %
21 % p centre: vector for the centres of uncertain parameters
22 %
23 % w p: weighting vector for the uncertain parameters so that p delta is
24 % between −1 and 1
25 %
26 % x centre: vector for the centres of state vector
27 %
28 % w x: weighting vector for the state vector so that x delta is
29 % between −1 and 1
30 %
31 % safety factor: safety factor for the upper bound, greater than 1,
32 % smaller value may give more tighter bound but with higher risk
33 % that may be wrong, this only applies to the upper bound
34 %
35 % c min max: adjusting value for obtain bounds for max(f) and min(f)
36 %
37 % Output:
38 % x upper: upper bound
39 % x lower: lower bound
40 % f min max: minimum and maximum values of f found during the sampling
41

42 % Programmed by Jongrae <Jongrae.Kim@glasgow.ac.uk>
43 % University of Glasgow
44 % Biomedical Engineering
45 % RobustLab: http://www.robustlab.org
46

47 %%
48 if nargin < 13
49 reset steps = 1000;
50 end
51 if nargin < 14
52 c min max = 0;
53 end
54 if nargin < 15
55 dt = 1;
56 end
57

58 if isempty(c min max)
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59 c min max = 0;
60 end
61

62 tol = 1e−6;
63 current big box = box init(2);
64 current small box = box init(1);
65 f min max = [inf −inf];
66

67 %%
68 while abs(current big box−current small box) > tol
69

70 current box size = (current big box + current small box)/2;
71 current k = current box size;
72

73 comp pct = abs(current big box−current small box);
74

75 if comp pct < 10 && comp pct > 1e−3
76 fprintf('(%dth−step) Remaining calulation = %4.3f%% (a.u.)\n',k step,comp pct);
77 end
78

79 for idx=1:num steps
80

81 % sample in the 1−norm box random face
82 delta px = 2*rand(num delta sample,delta dim+state dim)−1;
83 rand face = randi(delta dim+state dim,num delta sample,1);
84 idx face = ...
85 sub2ind([num delta sample delta dim+state dim],(1:num delta sample)',rand face);
86

87 delta px(idx face) = sign(rand(num delta sample,1)−0.5);
88 k delta c = current k;
89

90 [f real, f delta] = I ND gpu vector(k step,delta px,k delta c, ...
91 which x,p centre,w p,x centre,w x,c min max,reset steps,delta dim,dt);
92

93 [f real, idx f real min] = min(f real);
94 f delta min = min(f delta,[],1);
95 f delta max = max(f delta,[],1);
96

97 if f delta min(which x) < f min max(1)
98 f min max(1) = f delta(which x);
99 end

100

101 if f delta max(which x) > f min max(2)
102 f min max(2) = f delta(which x);
103 end
104

105

106 if f real < 0
107 current big box = current box size;
108 x lower = 1/current k;
109 current k upper = current k;
110 current delta px worst = delta px(idx f real min,:);
111 break;
112 end
113

114 end
115

116 if (idx==num steps) && (f real > 0)
117 current small box = current box size;
118 x upper = 1/current k;
119 end
120
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121

122 end % of while
123

124 % Refining the x upper, i.e., k lower
125 extreme delta = sign(current delta px worst);
126 upper bd not converge = true;
127

128 epsilon box = min([tol*10 norm(extreme delta−current delta px worst)]);
129 k box = [current k upper/10 current k upper];
130

131 while upper bd not converge
132

133

134 for idx=1:num steps
135

136 % sample in the epsilon−norm box random face
137 delta px = 2*rand(num delta sample,delta dim+state dim,1)−1;
138 delta px = epsilon box*delta px;
139 delta px = kron(ones(num delta sample,1),current delta px worst) + delta px;
140

141 k delta c = k box(1) + abs(diff(k box))/2;
142

143 [f real, f delta] = I ND gpu vector(k step, delta px, ...
144 k delta c,which x,p centre,w p,x centre,w x,c min max,reset steps,delta dim,dt);
145

146 f real = min(f real);
147 f delta min = min(f delta,[],1);
148 f delta max = max(f delta,[],1);
149

150 if f delta min(which x) < f min max(1)
151 f min max(1) = f delta(which x);
152 end
153 if f delta max(which x) > f min max(2)
154 f min max(2) = f delta(which x);
155 end
156

157 if f real < 0
158 k box(2) = k delta c;
159 break;
160 end
161

162 end
163

164 if ((idx==num steps) && (f real > 0))% | | (abs(diff(k box)) < tol)
165 upper bd not converge = false;
166 x upper = 1/k box(2);
167 end
168

169

170 end % of while
171

172 %%
173 x upper = safety factor*x upper;
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B.3 I ND gpu vector.m

1 function [f real, f delta] = I ND gpu vector(k step, delta px, k delta c, ...
2 which x, p centre, w p, x centre, w x, c min max, reset steps, num delta,dt)
3 % Input:
4 % k step: bounds for k step value of f(x,d)
5 %
6 % delta px: vector including delta p and delta x
7 % e.g. delta px = [ delta p(1); delta p(2); delta x1; delta x2]
8 %
9 % k delta c: current k*delta c

10 %
11 % which x: which x's bounds to be calculated, range = [1 state dim]
12 %
13 % p centre: vector for the centres of uncertain parameters
14 %
15 % w p: weighting vector for the uncertain parameters so that p delta is
16 % between −1 and 1
17 %
18 % x centre: vector for the centres of state vector
19 %
20 % w x: weighting vector for the state vector so that x delta is
21 % between −1 and 1
22 %
23 % c min max: adjusting value for obtain bounds for max(f) and min(f)
24 %
25 % Output:
26 % f real: real part of det(I−N Delta)
27 % f delta: f evaluated at the sampled point
28

29 % Programmed by Jongrae <Jongrae.Kim@glasgow.ac.uk>
30 % University of Glasgow
31 % Biomedical Engineering
32 % RobustLab: http://www.robustlab.org
33

34 global function handle;
35

36 k step = mod(k step,reset steps);
37 if k step==0
38 k step=reset steps;
39 end
40

41 %% CHANGE BELOW
42 %−−−−−−−−−
43 num state = length(x centre);
44 num data = size(delta px,1);
45

46 % output state
47 switch which x
48 case 1
49 ErbB1 = [59 60 73 75 76 77 78 79 80 81

82 83 84 85 86 87 88 89 235 236 237 238
239 240 241 242 244 245 246 247 248 249 250 251
359 360 361 362 365 366 368 369 371 372 388 412
441 442 443 463];

50 ErbB12 = [47 48 90 91 96 97 102 103 108 109
114 115 120 121 126 127 132 133 213 216 219 222 225
228 231 234 262 263 279 282 295 298 308 311 375
376 389 416 435 444 445 464];

51 ErbB13 = [ 49 50 92 93 98 99 104 105 110

68

Distribution A:  Approved for public release; distribution is unlimited.



111 116 117 122 123 128 129 134 135 212 215 218 221
224 227 230 233 264 265 280 283 296 299 309 312
377 378 390 410 436 446 447 459 465 477 ];

52 ErbB14 = [ 51 52 94 95 100 101 106 107 112
113 118 119 124 125 130 131 136 137 211 214 217 220
223 226 229 232 266 267 281 284 297 300 310 313
373 374 391 411 437 448 449 458 466 478];

53 out idx = [ErbB1 ErbB1 ErbB12 ErbB13 ErbB14]; % ErbB1 is dimer
54 case 2
55 Erk = [345 346 348 349 359 360 361 362 363 364

442 443 444 445 446 447 448 449 450 451 452 453 454
455];

56 out idx = Erk;
57 case 3
58 Akt = [405 407 470 471];
59 out idx = Akt;
60 otherwise
61 out idx = [];
62 end
63

64 % if the centre of x is zero, then take the absolute value of all
65 % perturbation
66

67 big w p = kron(ones(num data,1),w p(:)');
68 %big p = kron(ones(num data,1),p centre(:)') +
69 big p = big w p.*delta px(:,1:num delta);
70 big w x = kron(ones(num data,1),w x(:)');
71 big x c = kron(ones(num data,1),x centre(:)');
72

73 % take absolute perturbation if x c = 0
74 zero idx = (big x c==0)*(−1)+(big x c˜=0);
75 x state = big x c + big w x.*(delta px(:,num delta+1:end).*zero idx);
76 x state(x state<0) = 0;
77

78 %keyboard
79

80 % include nominal for safety
81 x state(end,:) = x centre(:)';
82 big p(end,:)=big p(end,:)*0;
83

84 p gpu = gpuArray(big p(:));
85 x state gpu = gpuArray(x state(:));
86 k step gpu = gpuArray(k step);
87 num data gpu = gpuArray(num data);
88

89 %dt = dt*0.001;
90 dt gpu = gpuArray(dt);
91

92 x out = zeros(size(x state));
93 x gpu out = gpuArray(x out);
94

95 f0 = zeros(size(x state));
96 f0 gpu = gpuArray(f0);
97 f1 = zeros(size(x state));
98 f1 gpu = gpuArray(f1);;
99 x0 = zeros(size(x state));

100 x0 gpu = gpuArray(x0);
101 x1 = zeros(size(x state));
102 x1 gpu = gpuArray(x1);
103

104 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105 % ptx option: !nvcc −ptx get f delta ptx.cu

69

Distribution A:  Approved for public release; distribution is unlimited.



106 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107 x gpu out = ...
108 feval(function handle, ...
109 x gpu out, p gpu, x state gpu, k step gpu, ...
110 num data gpu, dt gpu, f0 gpu, f1 gpu, x0 gpu, x1 gpu);
111 x state = gather(x gpu out);
112 x state = reshape(x state, num data, num state);
113 f delta = sum(x state(:,out idx),2);
114

115 x state gpu = gpuArray(x state(:));
116

117 f real = 1−k delta c*abs(f delta(:)+c min max);
118

119

120 end
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B.4 get f delta ptx vector form.cu

1 // Programmed by Jongrae Kim <Jongrae.Kim@glasgow.ac.uk>
2

3 // Warning
4 // 1. Do not use a variable as an input and output at the same time
5

6 #define NUM STATE 504
7 #define NUM DELTA 227
8

9 // function header
10 device void f p x(double * x out,
11 const double * p in, const double * x in, const int num data, const int idx);
12

13 // main function
14 global void get f delta( double * x2,
15 const double * p in, const double * x in,
16 const int k step, const int num data, const double dt,
17 double * f0, double * f1, double * x0, double * x1)
18 {
19 int idx = threadIdx.x + blockIdx.x * blockDim.x;
20 int current time step;
21 int current state step;
22

23 // integration using Two−Step Adams−Bashforth
24 for (current time step=0; current time step < k step; current time step++)
25 {
26

27 if (current time step == 0)
28 {
29 // f0 = f(x0)
30 f p x(f0, p in, x in, num data, idx);
31

32 // x2 = x0 + dt f(x0): special case for current time step = 0
33 for (current state step=0; current state step < NUM STATE; current state step++) {
34 x2[idx+current state step*num data] = x in[idx+current state step*num data]
35 + dt*f0[idx+current state step*num data];
36

37 if (x2[idx+current state step*num data] < 0.0)
38 x2[idx+current state step*num data] = 0.0;
39

40 //save for the next step
41 x0[idx+current state step*num data] = x in[idx+current state step*num data];
42 x1[idx+current state step*num data] = x2[idx+current state step*num data];
43 }
44 }
45 else
46 {
47 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 // Two−step Adams−Bashforth Integration
49 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50

51 // f(x0) & f(x1)
52 f p x(f0, p in, x0, num data, idx);
53 f p x(f1, p in, x1, num data, idx);
54

55 // x 2 = x1 + 1.5*dt*f(x1) − 0.5*dt*f(x0)
56 for (current state step=0; current state step < NUM STATE; current state step++) {
57 x2[idx+current state step*num data] = x1[idx+current state step*num data]
58 + 1.5*dt*f1[idx+current state step*num data]

71

Distribution A:  Approved for public release; distribution is unlimited.



59 − 0.5*dt*f0[idx+current state step*num data];
60

61 if (x2[idx+current state step*num data] < 0.0)
62 x2[idx+current state step*num data] = 0.0;
63

64 // save for the next step
65 x0[idx+current state step*num data] = x1[idx+current state step*num data];
66 x1[idx+current state step*num data] = x2[idx+current state step*num data];
67 }
68

69 }
70

71

72 }
73

74 }
75

76

77 // function definition
78 device void f p x(double * x out,
79 const double * p in, const double * x in, const int num data, const int idx)
80 {
81

82 // make the state index vector
83 int current state step;
84 int state idx[NUM STATE];
85 for (current state step=0; current state step < NUM STATE; current state step++)
86 state idx[current state step] = idx + current state step*num data;
87

88 // make the delta index vector
89 int current delta step;
90 int delta idx[NUM DELTA];
91 for (current delta step=0; current delta step < NUM DELTA; current delta step++)
92 delta idx[current delta step] = idx + current delta step*num data;
93

94

95 // kinetic parameters
96 double kd1=3.300000e−02 + p in[delta idx[0]];
97 double k1c=8.000000e+02 + p in[delta idx[1]];
98 double kd1c=1.000000e+00 + p in[delta idx[2]];
99 double kd1d=1.000000e−01 + p in[delta idx[3]];

100

101 // omitted ...
102

103 // differential equations
104 x out[state idx[0]] = 0.0;
105 // keep EGF constant, e.g. 5e−9 = 5 nM
106 // EGF (See Figure 2 in the Reference) or 0.01e−9 (Figure 2)
107

108 x out[state idx[1]] = −(k1*x in[state idx[0]]*x in[state idx[1]]−kd1*x in[state idx[2]]);
109 x out[state idx[1]] = x out[state idx[1]]
110 −(k6*x in[state idx[1]]−kd6*x in[state idx[242]]);
111 x out[state idx[1]] = x out[state idx[1]]
112 −(k120b*x in[state idx[482]]*x in[state idx[1]]−kd120*x in[state idx[60]]);
113 x out[state idx[1]] = x out[state idx[1]]
114 −(k120b*x in[state idx[483]]*x in[state idx[1]]−kd120*x in[state idx[62]]);
115 x out[state idx[1]] = x out[state idx[1]]
116 +(k122*x in[state idx[417]]*x in[state idx[35]]−kd122*x in[state idx[1]]);
117

118 x out[state idx[2]] = (k1*x in[state idx[0]]*x in[state idx[1]]−kd1*x in[state idx[2]]);
119 x out[state idx[2]] = x out[state idx[2]]
120 −(k2*x in[state idx[2]]*x in[state idx[8]]−kd2*x in[state idx[9]]);

72

Distribution A:  Approved for public release; distribution is unlimited.



121 x out[state idx[2]] = x out[state idx[2]]
122 −(k2*x in[state idx[2]]*x in[state idx[2]]−kd2*x in[state idx[11]]);
123 x out[state idx[2]] = x out[state idx[2]]
124 −(k2b*x in[state idx[2]]*x in[state idx[14]]−kd2b*x in[state idx[15]]);
125 x out[state idx[2]] = x out[state idx[2]]
126 −(k2b*x in[state idx[2]]*x in[state idx[16]]−kd2b*x in[state idx[17]]);
127

128 // omitted ...
129

130 x out[state idx[503]]=(k122*x in[state idx[498]]*x in[state idx[35]]
131 −kd122*x in[state idx[503]]);
132 x out[state idx[503]] = x out[state idx[503]]
133 +(k123h*x in[state idx[243]]*x in[state idx[35]]−kd123h*x in[state idx[503]]);
134 }
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